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P.-Etienne Bourban

Résistance des matériaux
Flexion
Rappels de statique, hyperstatique
Flexion simple, états de contraintes, déformations
Méthode des équations différentielles, déformées
Flexion combinée 

Energies de déformation élastique
Critères de performance
Concentrations de contraintes
Les limites de l’élasticité https://www.marcoodermatt.ch/en/media-en
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σmax=1.2 MPa 

σmax=0.85 MPa 
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Flexion

•pure, simple, combinée
•poutres, poutres droites
•contraintes normales
•déformations
•les équations différentielles
•calculs de poutres
•contraintes tangentielles
•état de contraintes, isostatiques
•déformées de poutres
•superposition et poutres hyperstatiques

Fibre moyenne,
Axe neutre 

S +
S -
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Flexion

y

x

z
 

T

 

M

 

R
 

M f

 

Tz

• Combinée Mf +Mt 

• Simple Torseurs≡

• Pure  

 

M f et T
⊥  entre  eux

 

T = 0, ⇒ M = cste( )

• Mf ne comporte que Mfz=M ⊥ à 
Gxy le plan de flexion

• La fibre moyenne est une droite 
confondue avec l’axe Gx

• S’ se déduit de S par simple 
rotation autour de Gz 
⇒Bernoulli OK

 

M fy

 

M fz

G

 

Ty

H

H

H
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Flexion

y

x

y

z

y

x

y

x

σmin= σtraction

G G G G

σmax= σcompression

SS’ d
1

d2Mf
Mf

σ(y)

Mf

d1>d2

x

y

Paroi supérieure 
rendue concave

M >0

Fibres dans la 
direction y>0 sont 

sous traction

S+S-
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→ σ = 0 sur Gz ou y = 0 ≡ axe  neutre  de  la  section
→ σ > 0 pour y > 0

σ < 0 (compression) pour y < 0

→ σ max =
M
Iz

⋅ d1 , σ min =
M
Iz

⋅ d2

→
I
di

= Moment  de  résistance  à  la  flexion ≡ Wi



 

Les équations d'équilibre de la section sont toutes nulles sauf  M = σ ⋅ y ⋅ dS
s
∫∫

S'  par rotation de S ⇒ σ ≈ y ≡ σ = K ⋅ y

 
 
 

  
M = K y 2

s
∫∫ dS

= I z

 

 

⇒ K =
M
Iz

⇒ σ =
M
Iz

⋅ y
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Design
Sections de même surface (=même quantité de matière répartie différemment) → I varie

Si        I =1 ⇒ I =1,78 I =3,06 I =7,48 I =8,88

G
G

G

En variant la position de l’axe neutre, on peut varier le rapport σc/ σt
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Déformation en flexion pure

G1 G2

y

x

rc

G1
G2’

y

0

Initial

Après 
déformation

ydx dx

 

• Sur  l'axe  neutre  σ = 0 ⇒ G1G2 '  reste  G1G2 = dx  et  rc ⋅ dθ = dx
• Une  fibre  à  y  s'allonge  de  ε ⋅ dx  avec

y ⋅ dθ = ε ⋅ dx =
σ
E

⋅ dx =
M
I

⋅
y
E

dx

→ dθ =
M

E ⋅ I
⋅ dx

 

1
rc

=
M

E ⋅ I

dθ

ε.dx

dθ

M
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Remarque

Déformation latérale ≡ dilatation et contraction dues aux σnormales

Vu la distribution des σ il est facile de voir qu’une section rectangulaire se déforme comme:

Léger déplacement de l’axe neutre, négligeable en pratique

z

y

rc
’

G

 

1
rc '

=
ν
rc

= ν M
E ⋅ I

ν =
rc

rc '

Coefficient de Poisson
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Relations entre N, T, M: les équa. diff. de la flexion

q(x)

dx

dx

N N+dNq(x).dx

N N+dN

x

y

y

n(x).dx

q(x).dxT T+dT

M
M+dMT+dTT

B

q(x)

n(x) dx

M M+dM

a)

b)

B
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

 

ΣFy = 0 ⇒ −T + q(x)dx + T + dT = 0 →
dT
dx

= −q(x)

ΣMB = 0 ⇒ −M − Tdx + q(x)dx ⋅
dx
2

≈0
  

+ M + dM = 0 →
dM
dx

= T

→
d2M
dx

=
dT
dx

= −q(x)



 

ΣFx = 0 ⇒ − N + n(x)dx + N + dN = 0 →
dN
dx

= −n(x)

ΣFy = 0 ⇒ − T − q(x)dx + T + dT = 0 →
dT
dx

= q(x)

ΣMB = 0 ⇒ − M − Tdx − q(x)dx ⋅
dx
2

≈0
  

+ M + dM = 0 →
dM
dx

= T ⇒
d2M
dx 2 = q(x)

a)

b)
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x

 

M x( )

 

T x( )=
dM
dx

x

 

q x( )=
dT
dx

x

si n(x)=0 → N=cste

si n(x)=cste → N varie linéairement en x

si q(x)=0 ⇒ T=cste → M varie linéairement en x
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Poutre simple uniformément chargée

 

Equilibre   de   la   poutre

ΣFx = 0 ⇒ Ax = 0

ΣFy = 0 ⇒ Ay = By =
q ⋅ L

2

Réduction des efforts dans S à x
• N x( )= −Ax = 0

• T x( )= Ay − q ⋅ x =
q ⋅ L

2
− q ⋅ x → Linéaire

• M x( )= Ay ⋅ x − q ⋅ x ⋅
x
2

=
q ⋅ L

2
x −

q ⋅ x 2

2
→ Parabolique

Mmax ⇒
dM
dx

= 0 → x =
L
2

→ Mmax =
qL2

8

q =cste [N/m]

N

TM

N

 

qL
2

 

−
qL
2

By

Ax

Ay

 

qL2

8

T

M

L

x

-
+
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Distributions de charges

q =cste [N/m]

x

qx

x/2

L

≡

1/2(qmaxL)

2L/3
≡

qmax
q=q(x)
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Poutre simple avec force transversale concentrée

max

 ; 0

:C de gauche à juste proche,Section   

0  ;  ;0     :Sur   

0  ;  ;0     :Sur   

NTM Diagrammes
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Contraintes tangentielles en flexion simple

b
M

I
T

Mdx
I
TydSdx

I
Tdxb

Tdx
I
ydx

dx
dM

I
y donc dσ

I
M ymais  σ

dxbdSd

dxbdSddS

S

S
S

S

SS

'

'
'

'

''

 

 '  

  '

0  ')('

=

==

===

=

=−++−

∫

∫

∫∫

τ

τ

τσ

τσσσ

M+dMM

S2S1

S’

σ+dσσ

S3=bdx

b

dx

τ

τ
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Contraintes tangentielles
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Etat de contraintes

En Mo d’une section d’une poutre en flexion simple les 
contraintes sont:

 

sur     Sx σ x =
M
I

y

τ x =
T ⋅ MS '

I ⋅ b

sur     Sy σ y = 0
τ y = −τ x

 

 

 
 
 
  

 

 
 
 
 
 

Donc état bidimensionnel, donc Kx , Ky 
et le diamètre du cercle de Mohr sont 
connus, ainsi que la direction αo  et  les 
contraintes principalesy

x

σx

Sx

τx

τy
Sy

Mo

y

x

isostatiques
σ1σ3

σ1 σ3

αo

Mo
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Les isostatiques

de traction

de compression

PEn console ou encastrée

Armatures de renforts: béton armé, composites

2 appuis
q
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En flexion simple

• Les isostatiques sont des courbes planes identiques pour tous les plans z =cste

• Tracer les iso      ← calculer σ1, σ2, σ3,  en plusieurs points

← équation différentielle, résoudre numériquement

← jauges de déformation, de contraintes

← vernis craquants

← photoélasticité

• Les isostatiques sont tangentielles aux fibres extérieurs car τ =0 sur les bords

• Les isostatiques se rencontrent sur l’axe neutre avec un angle ±π/4 car on a du   
cisaillement pur

• Poutre symétrique par rapport à l’axe neutre ⇒ les isostatiques sont symétriques
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Déformée des poutres droites en flexion simple

G(x,0): centre de gravité de la poutre

Déformation ⇒ déplacement vertical de G

H Le déplacement horizontal est négligeable ici .

Ce n’est pas le cas pour les lames minces et 
pour les poutres courbes

G’(x,y)

 

La  courbure  1
rc

=
M

E ⋅ I

y

xG(x,0)

y(x)G’(x,y)



22

P.-Etienne Bourban

La  courbure  de  y(x)  est  donnée  par

 

1
rc

= ±
y ' '

1+ y '2( )3 / 2

Dans le cas y’ est très petit

y’2 est négligeable

H

 

1
rc

≅ ± y' '

 

y' ' = −
M

E ⋅ I

Si M >0

la pente y’ diminue 

⇒ y’’ est <0
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Cette déformée  représente moins de 1% ⇒ négligée



 

yT = η
coefficient
de forme


T

G ⋅ S

Déformée due à l’effort tranchant
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Déformée d’une poutre de section rectangulaire en console

 

M x( )= −P l − x( )

y' '= −
M

E ⋅ I
E ⋅ I ⋅ y' '= P l − x( )

E ⋅ I ⋅ y'= P l x −
P x 2

2
+ C1

E ⋅ I ⋅ y =
P lx 2

2
−

P x 3

6
+ C1 x + C2

1

2

E , I

f

l

yx

H

B

β
β

2
1

( )

IE
lPflx

IE
lPlxy

xlx
IE

Py

⋅
⋅

=⇒

⋅
⋅

=≈

−
⋅

=⇒

===
===

3
= avec

2
)=en('   pente

3
6

0C  donc  0y  0x
0C  donc  0y'   0x

limitesaux      Conditions

3

2

2

2

1

β

P

T

M l
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Superposition

P

P

q

q

 

• y2 =
q

24 E I
6 l2 x 2 − 4 l x 3 + x 4( )=

q l4

8 E I

x =l

x =l

 

• y1 = −
P

6 E I
3l x 2 − x 3( ) = −

Pl3

3E I

 

• yT = y1 + y2
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Superposition des déformations

Pi
qj Mk

x

yi

yj

yk

yTotal
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Poutres hyperstatiques

 

Pour x ≤
L
2

; y1 =
qx 2

48EI
3L2 − 4Lx + 2x 2( )

Pour x ≥
L
2

; y2 =
qL3

384EI
8x − L( )

 

Pour x < L
2

; → yT = y1 + y3

Pour x > L
2

; → yT = y2 + y3

 

 
 

 
 

Conditions  aux  bords  x = L  →  yT = 0  →  RB =
7qL
128

; dans  y3 → yT

q

L
L/2

 

RB

q

+

 

y3 = −
RB x 2

6EI
3L − x( )
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