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Flexion

*pure, simple, combinée

spoutres, poutres droites

econtraintes normales

«déformations

les équations différentielles

calculs de poutres

econtraintes tangentielles

«état de contraintes, isostatiques
«déformées de poutres

ssuperposition et poutres hyperstatiques

S+

Fibre moyenne,
Axe neutre
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Flexion

= |
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* Combinée M +M,

E——

« Simple Torseurs= M, et T

1 entre eux

* Pure T:O, (:> Mzcste)

\ @ * M, ne comporte que M,=M L a

ny le plan de flexion

* La fibre moyenne est une droite
confondue avec [’axe Gx

« S'se déduit de S par simple
rotation autour de Gz
—=Bernoulli OK




Flexion
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direction y>(0 sont
sous traction
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Les ¢quations d'¢quilibre de la section sont toutes nulles sauf M = ” o-y-dS

; M=K || yds
S' parrotationde S > o~xy=0=K"y < ,
=1,
:>K:M
I
o=
I 4
— o0=0 sur G, ou y=0 =axe neutre de la section
— o0>0 pour y>0
o <0 (compression) pour y <0
M M
— Gmax :—'dl > Gmin :—.d2
I I

z z

I
N

] r . \ b
- z:Moment de résistance a la flexion




Design

Sections de méme surface (=méme quantité de matiére répartie differemment) — | varie

Si I=1= [=178 1=3,06 =748 =888

—

e Q)

*Q
*Q

. > — P\

En variant la position de [’axe neutre, on peut varier le rapport ¢,/ o,
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Déformation en flexion pure

0 8
Apres
"\ déformation
/:';/“\ e Sur l'axe neutre =0 = GG, reste GG, =dx et r,-dO=dx
dﬁi \ e Une fibre a y s'allonge de &-dx avec
i \ y do=¢-dx=2 dng-ldx
i adﬁz%-dx [T M
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¥
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Remarque

Déformation latérale = dilatation et contraction dues aux o,

ormales

Vu la distribution des o il est facile de voir qu’une section rectangulaire se déforme comme:

Coefficient de Poisson
T 15 1 v 7,
\\ / —' = —=V—- V= —'
—————————— ! _ )
0 =) S R r' r E-1 v,
= -_’_

Léger déplacement de I’axe neutre, négligeable en pratique
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Relations entre N, T, M: les equa. diff. de la flexion
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a)

2F, =0 =>-T+q(x)dx+T+dT=0 —)?z—q(x)
X
XM, =0 :>—M—de+q(x)dx-%+M+dM=O —)a:i—MzT
X
<0
_)dzM_dT__ )
dx  dx 1
b)
dN
XF =0 = —N+n(x)dx+N+dN=0 —> d—z—n(x)
X
dT
2F,=0 = —T-q(x)dx+T+dT=0 —> d—zq(x)
X
2
M, =0 = —M—de—q(x)dx-@JquLdM:O —> d—M:T — aM
\ 2 dx dx

Vo

~0
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Ter)=— (LI - S R
ar i

6](75)25i ‘l ' ' .

Si n(x)=0 — N=cste

si n(x)=cste — N varie linéairement en x

si q(x)=0 = T=cste — M varie linéairement en x
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Poutre simple uniformément chargée
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- L -
A, —
q =cste [N/m]
E —é}— Equilibre de la poutre
A, B .
2 ’ SF=0= A =0
X, /
: - _ _n _Y4
M( T F, =0 = Ay_By_T
1_ |

N 4

N Réduction des efforts dans S a x

e N(x)=-4,=0
L 4 * .
% ‘ r . T(x)sz—q-x:%—q-x — Linéaire
) - _% x . L . _xz
qL” L2 . M(x)sz-x—q-x-E:q2 x4 — Parabolique
8
L2
A Mmax:d—M:O —> x:£ _)Mmax:q—
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Distributions de charges

q4=q(x)

q =cste [N/m]

Qmax

qx

x/2

]

172(q,0l)

2L/3

]
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Poutre simple avec force transversale concentrée

- L -
A, A ClQ
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Ay - - By
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0b
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Equilibre de la poutre
SF =0=4 =0

SM =0=4, =QT'b;By :T'“
Diagrammes NTM

x=0
—>Sur §,: N=-4 =0 T:Ay:QT.b; M =4 -xl:O

y
—>Sur §,: N=0,T=-B, :-%; M=0
— Section proche, juste a gauchede C:

b
N=0;T=0—
QL

max

b-a
M:Ay-azQT:M

. : dM
Verification des courbes avec——=T

dx




Contraintes tangentielles enfexion simpie

—jadS'+j(a+da)dS’—rbdx=0
S’ S'

[dods' =7 b dx

o

mais azw donc dazldﬂdlede
1 I dx 1

T T
rbdx:dejde =—dx My

Sl

T M,
T=—
I b
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Contraintes tangentielles

B
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Etat de contraintes 18

En Mo d’une section d’une poutre en flexion simple les
contraintes sont:

. Donc état bidimensionnel, donc K, K,
(P et le diametre du cercle de Mohr sont

L connus, ainsi que la direction o, et les
contraintes principales

sur Sy o, = 0
T,=-T,

vy isostatiques
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Les isostatiques

console ou encastrée P

\ de traction
A // __/
oo el

de compression

2 appuis

lg

Armatures de renforts: beton armé, composites
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En flexion simple

e Les isostatiques sont des courbes planes identiques pour tous les plans z =cste
* Tracer lesiso <« calculer o, o, 0; en plusieurs points

<« équation différentielle, resoudre numériquement

<« jauges de deformation, de contraintes

<« vernis craquants

<« photoelasticité
* Les isostatiques sont tangentielles aux fibres extérieurs car v =0 sur les bords

* Les isostatiques se rencontrent sur [’axe neutre avec un angle /4 car on a du
cisaillement pur

* Poutre symétrique par rapport a l’axe neutre = les isostatiques sont symétriques
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Déformee des poutres droites en flexion simple Iy

G(x,0): centre de gravite de la poutre

Déformation = déplacement vertical de G
G(x,0) X

@ Le déplacement horizontal est négligeable ici .

Ce n’est pas le cas pour les lames minces et
pour les poutres courbes

G'(xy)

1 M

La courbure —=——
r FE-I

c




La courbure de y(x) est donnée par

1

Y
rc - (1_|_y'2)3/2

Dans le cas @ vy’ est tres petit

v est négligeable

1 L]
— =ty
rC

"no_ M
d E -1

Si M >0
la pente y’ diminue

=y est <0
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Déformée due a I'effort tranchant

n T
Yr =

coeff?gent G . S
de forme

Cette deformée représente moins de 1% = négligée
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Déformée d’une poutre de section rectangulaire en console

24
M(x)=—-P (I-x)
w.o M
5

E-I-y"=P(I-x)

2
E-I-y':Plx—sz +C @
2 3
E-[—y:Plx _Px +C x+C, @
2 6

Conditions aux limites
x=0 y'=0 donc C, =0
x=0 y=0 donc C,=0
P
T6E-1

x*(31—x)

=Y

P-I?
2E -1

N\
P.I @

3E-1

pente y'(ena/=1)=pf =

avecx=[= f =
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Superposition
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Superposition des déformations

—x




Poutres hyperstatiques

M
_|_
NN

i R
L gx’ ) R, x° B
Pour x <—; = —4Lx+2x =
2 T RRE ) Vs

L
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3L —x
6El ( )
gL’

8x — L
1eam X L)

Vo=

L
Pour x<5; >V, =y, + ),

7 Conditions aux bords x =L — y, =0 — R, =%; dans y, =y,
Pour x>5; >V =Y, t Y,
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5l Frlm:lpm:g: cas particuliers de flexjgy des rﬁﬂil droites hyperstatiques,
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